IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 30, 2020, accepted February 9, 2021, date of publication February 12, 2021, date of current version February 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3059273

Relaxing Platform Dependencies in Agent-Based

Control Systems

MARCO PEREZ HERNANDEZ ", (Member, IEEE), DUNCAN MCFARLANE, (Member, IEEE),
AJITH KUMAR PARLIKAD”, (Member, IEEE), MANUEL HERRERA", (Member, IEEE),

AND AMIT KUMAR JAIN

Institute for Manufacturing, University of Cambridge, Cambridge CB3 OFS, U.K.

Corresponding author: Marco Pérez Herndndez (mep53 @cam.ac.uk)

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) through the BT Prosperity Partnership
Project: Next Generation Converged Digital Infrastructure under Grant EP/R004935/1.

ABSTRACT Agent-based systems have been widely used to develop industrial control systems when they
are required to address issues such as flexibility, scalability and portability. The most common approach
to develop such control systems is with agents embedded in a platform that provides software libraries and
runtime services that ease the development process. These platforms also bring challenges to the agent-based
control system engineering. For example, they might introduce default design features, such as a global
directory of agents. Furthermore, agents are generally locked in a platform and depend on the platform’s
available support for deployment across computing infrastructures. This article addresses these challenges
through an approach for building agent-based control systems, that relaxes the dependencies in multiagent
system (MAS) platforms, through the use of container-based virtualisation. The proposed approach is elabo-
rated via a reference architecture that enables the implementation of agents as self-contained applications that
can be deployed, on-demand, in independent environments but still are able to communicate and coordinate
with other agents of the control system. We built a prototype using this approach and evaluated it in the
context of a case study for the supervisory control of digital network infrastructures. This case study enabled
us to demonstrate feasibility of the approach and to show the flexibility, of the resulting control system,
to adopt several topologies as well as to operate at different scales, over emulated networks. We also
concluded that designing agents as individual deployment units is also cost-effective especially in control
scenarios with low number of stable agents.

INDEX TERMS Agent-based control, multiagent systems, micro services, container-based virtualisation

industrial control, system containers.

I. INTRODUCTION

Modern industrial systems undergo a continuous and massive
demand for highly personalised services and products. Flexi-
bility to efficiently produce or provision services of different
characteristics as well as the ability to scale up and down
this production/provision become key requirements of such
industrial operations. Likewise, the control systems that sup-
port these operations should act as facilitators for addressing
these requirements and therefore exhibit also scalability and
flexibility, while avoiding compromises in performance and
effectiveness. Rapid changes in the controlled system implies

The associate editor coordinating the review of this manuscript and

approving it for publication was Shafiqul Islam

VOLUME 9, 2021

either a highly flexible control architecture —which is compu-
tationally expensive— or very short cycles of re-adjustment
and re-tuning to the new conditions by control designers.
Although these requirements have been widely addressed
by the research community (section II), recent trends towards
cloud manufacturing [1] and software-based services [2]
tighten demands for control systems. The availability of
diverse computing infrastructures has opened another dimen-
sion of flexibility, closely linked to portability, where the
system should be able to be deployed across available infras-
tructure from edge to cloud passing through fog hardware
resources [3]. This way the control system can take advantage
of the best deployment strategies in order to reduce data
transmission to the cloud and latency when the industrial

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30511

https://orcid.org/0000-0001-9697-3672
https://orcid.org/0000-0001-6214-1739
https://orcid.org/0000-0001-9662-0017
https://orcid.org/0000-0002-0223-5335

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

system demands it. As production and service provision sys-
tems increasingly rely on software components —e.g. web
services— that enable quick reconfiguration of resources and
capabilities, the control systems should operate with similar
speed and exhibit the ability to shrink or expand (e.g. in terms
of the number of controlling entities) according to demand
patterns.

The agent-based paradigm has been demonstrated to be
effective in addressing different requirements of flexibility
(e.g. mix, volume, product, etc.) identified for industrial sys-
tems. However, existing approaches for agent-based control
are usually coupled to an agent platform which operates on
controlled or semi controlled environments. When addressing
flexibility and scalability this is a problem, as usually agent
platforms have their own limitations and evolution cycles.
For example, some of the platforms are strictly academic
efforts while others are industry initiatives. Some platforms
are more aligned to standards than others and the openness is
limited as usually agents implemented in one platform cannot
be accommodated in another one [4]. Coupling the control
system to the platform brings uncertainty as the platform
might not evolve as the control systems requires.

Latest advances in virtualisation and microservices archi-
tectural patterns have incorporated new approaches and tech-
nologies for engineering of complex software systems [5].
Jointly used, these are tools that enable building systems
from loosely coupled and distributed services that can evolve
independently of each other and are easily portable across the
available computing infrastructure [6]. Few efforts have been
found in the literature of agent-based control systems that do
not rely in conventional MAS platforms but try to combine
advantages of agents and these technologies and architectural
patterns.

The main contributions of this article are threefold. First,
it proposes an approach for engineering of agent control
systems, using container-based virtualisation and microser-
vices architectural patterns as an alternative to conventional
approaches where the agent-based control system is coupled
to a MAS platform. Second, the paper introduces a reference
architecture that shows how this approach can be used to
build the mentioned control systems. Thirdly, it discusses a
case study in the context of next generation digital network
infrastructures where the benefits of this approach are dem-
onstrated, initially at small scale, through a prototype operat-
ing in a realistic environment, and later, at a larger scale, via
simulation experiments.

This article is organised as follows. Section II reviews the
relevant literature on agent-based control systems, the use
of MAS platforms and the tools used in this work. Next,
section III introduces the overall approach, discusses how
global directory of agents are substituted and how the agents
are decoupled from a platform, the end of this section presents
relevant design considerations. Section I'V elaborates our sec-
ond contribution by introducing a reference architecture to
build industrial systems using control behaviours and con-
tainerised agents. The section V describes the case study and

30512

the evaluation approach, it also discuses the results obtained
and the lessons learned. Finally, section VI summarises con-
cluding remarks and future work.

Il. RELATED WORK

This section reviews key contributions in three directions: the
motivation for agent-based control systems, the development
approach for such systems and a set of software tools with
potential to complement current development approaches.

A. RATIONALE FOR MULTIAGENT-BASED CONTROL
SYSTEMS

Modern industrial control systems aim to meet multiple
non-functional requirements. Among these, flexibility [7],
scalability [8] and portability [9] are fundamental to ensure
their continuous evolution and long-lasting operation. Flex-
ibility refers to how easy the system can be modified for
applications or environments that are different to the ones
it was initially designed for [10]. In manufacturing control,
flexibility refers to the ability to change the mix of prod-
ucts, volumes, the sequence of operations in which they are
produced or the flows of material, among others [11], [12].
Portability is defined as ‘“‘the ease with which a system or
component can be transferred from one hardware or software
environment to another” [10]. Portability is even more neces-
sary nowadays as computing resources are widely distributed
along edge, fog and cloud infrastructures. Scalability refers
not only to the ability of the system to accommodate and
handle an increasing amount of workload [8] but also to
perform efficiently under these conditions [13]. Multiagent
systems have been instrumental to address these requirements
in several industrial contexts [14] and we review some of
these solutions.

ADACOR [15] is an agile and adaptive architecture that
enables fast reaction to disturbances in the shop floor. In this
architecture agents are used to materialise a set of cooperative
and autonomous holons, where a supervisor holon is able to
coordinate and make decisions with a global perspective. A
prototype of ADACOR was built using JADE as it provided
compliance with FIPA agent standards. SOHCA [16] is a
service-oriented and holonic control architecture for recon-
figuration of disperse manufacturing systems presented. In
their article, authors propose a method to design such recon-
figurable systems using Petri Nets and enabling integration
between factory control and shop floor control layers.

WANTS [17] introduces a workflow and agents approach
for managing large-scale network and service management
in the context of Telecom Italia. In their work, the authors
report the use of WANTS for access network and part of
the metropolitan aggregation network, not for the national
backbone. WANTS is developed on top of WADE, a Work-
flow extension of JADE, that gives JADE agents the ability to
execute workflows. WANTS architecture incorporates Agent
Applications (AA) that are developed as workflow engines.
They report their approach is flexible to changes in devices
and in the topology of the network. Authors do not mention

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

portability of their solution across infrastructure. The authors
of [18] present a hierarchical agent architecture built with
JADE and OSGI.

B. MULTIAGENT-BASED SYSTEM DEVELOPMENT

The development of agent-based control systems relies in
Multiagent system (MAS) platforms. Fig. 1 shows a summary
of the implementation approaches in the 50 most cited! jour-
nal and conference article s, related to “multi agent industrial
control” that were published in the last decade and that
reported some implementation, i.e. excluding reviews and
purely theoretical contributions. MAS platforms have been
used in 16 out of 27 article s with an operational system
prototype, with JADE [19] used or extended in 13, JaCaMo
[20] in 2 and Gorite [21] in 1. This sample gives an indication
of the importance of MAS platforms in agent-based control
development. However, the reader is directed to [22], [23] for
more comprehensive reviews of existing platforms.

MAS Operational

Prototype
Platform-based Non-platform-
based
0 5 10 15 20 25

Number of papers

FIGURE 1. Implementation approaches in the top-50 most cited papers
related to multiagent industrial control.

Such platforms are technological architectures that provide
the environment in which agents operate [24]. They ease the
engineering of the control system and facilitate interoperabil-
ity among standard-compliant platforms [25]. For example,
platforms based on the FIPA? standard incorporate agent
and service directory services where agents register and look
for others or the services they offer [26]. However, such a
platform-dependent approach has the following implications
to the industrial control systems:

o Platform Localisation. The assumption that (FIPA-
compliant) platforms are controlled environments with
central directory services [26] might affect system scala-
bility and robustness [27] as it incorporates a single point
of failure to the system [28]. Discovery of other agents
and their services is, by design, dependant on a directory,
ruling out other approaches such as a decentralised ser-
vice discovery [29]. This assumption also implies that
platforms provide global visibility of the entire MAS.
Not only maintaining the global view of the MAS can
be computationally demanding as the system grows, but
also there are cases where a global view is not neces-
sary to achieve global system goals as shown in several
applications within the field of swarm engineering [30].

1According to Semantics Scholar on 17/12/2020.
2Foundation for Intelligent Physical Agents

VOLUME 9, 2021

o Platform Extendability Constraints. The platform ser-
vices are deployed as one or several software applica-
tions with agents embedded within the platform [28].
We highlight two implications of this approach: on the
one side, it couples the agents to a particular plat-
form, usually one platform cannot accommodate agents
developed in other platform [24]. Furthermore, inter-
operation between multiple platforms is also limited
and only recently, progress has been made in defining
environments that enable such interactions [31]. On the
other side, this approach implies that agents might share
resources and then interfere with each other when they
are deployed as a single application. Moreover, the abil-
ity to monitor individual agents performance and their
resource usage varies widely from platform to platform.
Monitoring individual agent’s resource usage is key to
scale the system and make decisions about where to
deploy each agent according to their resource demands.

o Platform Deployment Limitations. Despite substantial
progress enabled by the existing platforms, it is still an
open challenge to facilitate the distribution of intelli-
gence across the available infrastructure i.e. edge, fog
and cloud [3]. In addition, the amount of manual setup
required [27] slows down the processes of porting agents
to different computing environments.

Overall, an agent platform eases the implementation of the
agent-based control systems, but it also constraints the way
that the solutions are built. As a result, the control sys-
tem ability to address requirements of flexibility, portability
and scalability is limited by the platform’s capabilities. The
efforts to mitigate these limitations can take two directions.
On the one side, evolving and extending the current plat-
forms, e.g. by enabling deploying of agents developed in
other languages and platforms, as suggested by [4]. Alterna-
tively, the dependency on MAS platforms can be reduced, for
example, by bringing, to control system engineering, other
distributed systems development approaches and technolo-
gies that have been less exploited in this field.

C. DISTRIBUTED SYSTEM ENGINEERING TOOLS

This article presents alternatives to platform-based agent
development that can facilitate the development of ad hoc
agent-based control systems. To support this, here we review
some system engineering tools that have the potential to
complement MAS-based industrial control engineering.

1) MICROSERVICES

Authors of [32] define microservices as decoupled and
autonomous software units with a specific functionality in
a bounded context. For [33], microservices is a specific
approach to implement Service Oriented Architectures (SOA)
where each microservice is a small autonomous service
within a business boundary. Microservices is also regarded
as an approach to build distributed systems from ‘‘small

30513

https://www.semanticscholar.org/
http://www.fipa.org/

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

applications with a single responsibility and that scale up and
are deployed independently” [34].

In [6], Richards highlights that microservices is an archi-
tectural pattern in which, regardless of the implementation
topology, a central notion of the pattern is having “sepa-
rately deployed units” which increase scalability and decou-
pling of components. Microservices also brings the advan-
tage of real-time production deployments, where the services
component can be easily and quickly swapped in real-time.
According to [35], the distinctive features of microservices
are encapsulation, modularity, distributed composition and
network-accessibility.

Applications of microservices in industrial context have
shown their benefits. Authors of [36] present their ongoing
efforts for transformation of the architecture of a distributed
automation system to use microservices. [37] propose to
build MAS based on microservices hence offering scalability,
flexibility and loosely coupling to Internet of Things (IoT)
applications. [38] introduced an edge-based microservices
architecture for IoT. They developed a mobility analysis ser-
vices case with extendable microservices and deployed their
system in low-capacity edge servers. Their results confirmed
the low latency of edge-computing solutions. [39] introduced
the “Multi-Agent Microservices” (MAMS) approach, where
interface agents expose their inbox —and potentially other
aspects of their internal state— as web resources, so other
agents use these resources to interact.

2) VIRTUALISATION AND SYSTEM CONTAINERS
Virtualisation technologies enable decoupling of the hard-
ware and the software running on it [40]. This decoupling
facilitates isolation of shared resources and capabilities as
well as runtime reconfiguration. As illustrated in Fig. 2
(adapted from [40]) the virtualisation can be achieved through
a hypervisor or through system containers [40]. Hypervisors
enable the creation of Virtual Machines (VMs) with a set of
allocated computing resources e.g. CPU, RAM, network and
file system. Depending on how the virtualisation is achieved,
the hypervisor can be of type I, if it enables the creation of
VMs on top of the bare hardware; or of fype 11, if it enables
creation of VMs on top of a host operating system.

Whereas VMs require a full guest operating system, con-
tainers offer a more lightweight approach, leveraging on the
host operating system kernel and implementing isolation of
processes [41], as well as, isolation of context and computing
resources [42]. As illustrated in Fig. 3, the containers are
built from an image script that links the required operating
system libraries and the software dependencies, together with
the application source code.

The joint use of microservices and containers brings ben-
efits in code portability, life cycle management and resource
utilisation [43]. With this approach, code portability is made
simple. A single image works as the template to build and
run one or many containers across different computing infras-
tructures with little configuration required and no additional
development. The image-based approach enables automation

30514

VM VM VM
M M M Application [+ . [Application Application | !
= = Libraries |! Libraries |! ! | Libraries |!
Application Application Application
Libraries Libraries Libraries Guest OS Guest OS Guest OS
Guest 0S| || Guest 0S|, || Guest 0S| | Virtual | Wirtual
Hardware ||
Wirtual ' ! | Hypervisor |

Hardware

Host Operating SystemKemel

a) Hypemnisor (Type I) Virtualisation
with tradifional OS5

b) Hypernvisor (Type I} Virtualisation with
traditional 05

c i Containe Contai

Lib. Lib. Lib

1]

ContainerP|

‘ Host:Operating

Hardware Hardware

d) Hypervisor Type | Virtualisation with Library

€) Container-based
OS/Unikernel

FIGURE 2. Virtualisation architectures.

Manually programmed

i Build

I . !
Source Image | Container
Code script | Image

Containers

FIGURE 3. Container generation.

of the image workflow by re-compiling, testing, deploying
and running new containers once the source code is updated
[44]. A container manager system —a.k.a engine—, is able
to store multiple images and create containers, on demand,
from the image built from the scripts as shown in Fig. 3.
Since the containers require a lower overhead than a VM,
these can be used to implement individual independent
applications or microservices. Furthermore, library operating
systems, such as Unikernels, enable the creation of guest
operating systems based on a specialised kernel i.e., tailored
to a single-purpose application, making these systems more
secure and resource-efficient than conventional virtualised
equivalents [45].

Note that these system containers, are different to the
application containers that have been implemented for some
MAS platforms, for example JADE. There are multiple dif-
ferences between these implementations of the container pat-
tern, perhaps the most relevant are that system containers
provide isolation of resources while enable the creation of
fully specialised software environment from the operating
system [40]. On the other side, the application containers are
MAS-platform specific and depend on the programming lan-
guage runtime the platform is implemented e.g. Java Virtual
Machine [25].

In the industrial context, system containers have been
barely discussed. [46] proposed an architecture for a
multi-purpose industrial controller that supports multiple

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

PLC execution engines while addressing flexible function
deployment. [47] explored the use of containers in real-time
applications to migrate from bare metal hardware to cloud
platforms, with comparable latency performance.

Ill. MAS DEVELOPMENT WITH REDUCED PLATFORM
DEPENDENCIES

Given the issues identified in the previous section with
platform-centred approaches to MAS development, it is desir-
able that industrial agent-based control systems consider
these requirements: 1) to avoid by-default single-point of
failures, 2) to avoid agent interference by enabling resource
isolation and 3) to ease agent portability across the available
infrastructure. In this section, we discuss how these require-
ments can be tackled with microservices and container-based
virtualisation tools.

A. CONTAINER-VIRTUALISATION FOR MAS
DEVELOPMENT

The approach being used in this article has its origins in the
telecom network engineering. Traditional telecommunication
networks were built from devices that performed different
network functions, e.g. routing or switching. Only recently
these functions were decoupled from the network devices in
an approach called Network Function Virtualisation (NFV)
that enables the deployment of functions across distributed
computing infrastructure as well as the selection and com-
position of them for the delivery of the telecommunication
services [2].

Inspired by these decoupled functions, agents of an
agent-based control system can also be decoupled from the
devices they are running on, and especially from a single
MAS platform. In consequence, the notion of an agent as
a self-contained design entity, goes beyond a design con-
cept to become also a self-contained deployment unit. Com-
pared to the NFV approach, there are two key differences of
these agents. First, these agents perform wider control func-
tions that can be extended beyond the telecommunications
domain, for example, these agents can perform production
control [48], including monitoring and scheduling. Second,
the agents are active and not passive services that need to be
orchestrated as is the case of functions in NFV.

Such agents are containerised software units that carry
out industrial control functions. They are implemented
as lightweight and self-contained applications with a
narrow-bounded responsibility. This enable these agents to be
deployed, scaled, tested, evolved, started and stopped inde-
pendently of other agents and its environment. As the agents
are deployed in system containers they can be implemented
in different programming languages, runtime platforms and
environments. Likewise, as the resulting control system is
built from a collection of independent agents, the dependen-
cies to a MAS platform are relaxed.

‘We now highlight the key properties of this approach and
discuss the differences with conventional approach that help
to address the shortcomings identified in section II-B.

VOLUME 9, 2021

B. REMOVING THE NEED FOR A GLOBAL DIRECTORY OF
AGENTS AND SERVICES

System containers have their own identification (e.g.
IP addresses) for each network they are connected to. Hence,
a one-to-one mapping between the container and the agent,
removes the need for extra agent IDs. This mapping simplifies
discovery of agents and still multiple agents can run in the
same machine given they are deployed in different system
containers and also multiple overlay networks can be defined.
Agents use their network address to locate each other, every
agent has a local directory with the addresses of the agents of
interest. The system designer determines the constraints on
the size of the local directories and the protocols to maintain
them. This approach brings flexibility to the control system as
decentralised service discovery can be used to locate agents
and services. Since there is no global system view by default,
the decision of the type of view to maintain is up to the system
designer and can vary depending on the number of agents of
the control system and the resources available for each one.
For example, a design can include distributed registries in
each agent that keep references of other agents depending on
their needs and their availability, similar to what is done in ad
hoc network protocols [49].

C. DECOUPLING AN AGENT-BASED CONTROL SYSTEM
FROM MAS PLATFORM

In the proposed approach, each agent of the control system
runs an isolated environment provided by the system con-
tainer. This means the agent is deployed with its own operat-
ing system and the software libraries required, according to its
functionality. The agent is also able to distribute its function-
ality along multiple threads of execution. Agents in a control
system are generally heterogeneous in various aspects. For
example, agents representing resources of a manufacturing
shop floor have responsibility to continuously monitor and
adjust configurations of physical properties of the resource
(e.g. a milling machine), and hence these agents can have a
long-lasting lifespan while the machine is in operation. On the
other side, for example, agents representing orders, might be
transient, performing simpler functions within minutes before
expiring. Although any of these agents can be implemented
with system containers, the container image characteristics
and software infrastructure required in each case might be
completely different. As the number of simultaneous orders,
although transient, might be generally higher than the num-
ber of resources, the system containers for implementing
these “order” agents have stricter resource constraints. These
constraints can be met by implementing these agents in a
different programming language and base operating systems
than the ones used for the ‘“‘resource” agents. As indicated
in section II-C2, existing technologies enable deployment
of highly bespoke operating systems with minimal footprint
and overhead. The whole control system is not embedded in
a MAS platform but each containerised agent has its own
software infrastructure that can evolve independently of the

30515

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

system. In addition, resource usage by each agent can be
monitored uniformly at system container level rather than
depending on platform-specific services.

To show the effect of sharing resources in the response
time, we implemented a simple MAS where a sender agent
periodically sent messages, of a given size, to a receiver agent
that acknowledges reception. Using container-virtualisation,
additional memory-intensive agents were deployed together
with the receiver agent, in the first case within the same
container and in the second case, in separate containers.
As shown in Fig. 4, when agents share resources, e.g.
RAM, the performance of each agent is affected when other
agents are using resources intensively. In the case illus-
trated, the mean response time for 576 messages (8 mes-
sages of each size per run) of different sizes, is increased
when memory-intensive agents are sharing resources with
the recipient agent. More important, the standard deviation,
represented by the shadow area, is high. As system containers
enable isolation of the agents environment, the overall com-
munication time is less sensible to other agents running in
the same machine as long as they are all running in isolated
environments.

o

I |-@- Agents sharing resources
-@- Agents with isolated environment

o
T

= N W A U O N ©
o o o o o
T T T T T

o

M

10B 100B 500B 1K 50K 100K 400K 600K 800K
Message size (Bytes)

o

Message response time (Milliseconds)

FIGURE 4. Comparison of agents response time when sharing and not
sharing resources for different message sizes, x and s for 8 runs per each
message size.

D. REDUCED PORTABILITY EFFORT

The incorporation of system containers in the control system
engineering enables the integration of software develop-
ment and deployment operations in a infrastructure-as-a-code
approach [43]. This approach brings, to the engineering
process, practices such as continuous integration, continuous
testing and integrated system change management, among
others [50] that also boost the system readiness for automa-
tion of software evolution and operation activities, including
portability. The agent’s software and library dependencies
are defined in a script (see Fig. 5) that is run once to
create the base image of the control agents, then multiple
instances, with potentially different configurations, can be
started on-demand across the available infrastructure. As
agents have their own isolated environment, the version

30516

Base Operating

FROM openjdk:12-alpine as stage0 <€ system

‘WORKDIR /opt/jre \
RUN jlink --module-path - Key execution
/opt/openjdk-12/jmods --add-modules paths
java.base,java.instrument,java.net.http,
java.logging,java.sql,java.xml,
java.naming, <
java.security.sasl,jdk.unsupported,
java.management, jdk.jfr --output
openjdk-12

t———Library
dependencies

RUN ["chmod", "u+x,g+x", <« Main

""/opt/docker/bin/akka-mas-supctl”] executable

FIGURE 5. Excerpt of container image showing specific runtime version
and modules loaded for a particular agent application.

conflicts on host platforms are limited and even completely
avoided. Overall the portability is simplified, a base image
is built once and containers can be installed many times in
multiple target host where the container management system
has been previously installed.

In addition, the life cycle of the agents is carried
out through a container management infrastructure which
enables the agents to be be started and shutdown, quickly
on-demand, without affecting others. Therefore, these con-
tainerised agents can be quickly scaled up or out (of the initial
runtime environment) and replaced with no required changes
to the implementation.

E. DESIGN CONSIDERATIONS

In this section we present a number of considerations for
designing an agent-based control following the approach pro-
posed.

1) Assessment of the agent implementation strategy.
Although it seems obvious, conventional approaches
assume the control systems is built on top of a MAS
platform, then the first decision is which platform to
use. That leads to a selection of programming lan-
guage and concrete design approach. [51] points out
that agent platforms do not meet specific needs of
industrial applications, given their general-purpose ori-
entation. On the contrary, a MAS platform-independent
approach enables the design of highly bespoke control
systems. When agents are mapped one-to-one to the
containers, some of the MAS platforms services, such
as the life cycle management, can be replaced by con-
tainer management services. Other services e.g. agent
discovery, are designed according to the concrete case.
However, the downside of this approach, compared to
the platform-dependent solutions, is that the design
effort is increased according to the complexity of the
use cases.

2) Individual and shared repositories. As an agent is
intended to encapsulate its own state, its design should
link state repositories and knowledge bases to each
individual agent. Knowledge sharing among agents
is preferred via message exchange rather than using
blackboard-type spaces that introduce a dependency
among the agent and a single-point-of-failure entity

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

Interaction Model

(ﬁ Message Protocols])(:é Topologies M user Interfaces)

Control Adaptation & Evol.

A

y

Control Agent Boilerplates

C ¥ Agent Launcher

(&Digital Assetj(-’-Digital Space]

Agent Images

| | -

=i Control Function e — - "
) -

™ [PRMEIEmET ! &service Manager || £ Process Manager I| “Product Manager |

ERE

£ control System
2 Optimiser

(ﬂ' Actuating)(ﬂ' Decision Making)(ﬂ' Sensing)

FIGURE 6. Control system reference architecture.

or service. Agents might share their own state data

(e.g. observations from the elements under control) or

configurations that other agents can use to their own

states. This has to be defined according to requirements
of each case, e.g. privacy and communication overhead.

Shared repositories, when required, are not part of

the core agent behaviours but are used for supporting

activities e.g. backup, archives, etc.

System-Wide Visibility Strategy. As a basic principle,

agents generally have a partial/local view of the envi-

ronment, however, for implementation purposes, this
principle is sometimes relaxed. A global view of the
environment is possible by either adding shared spaces
and services or enabling connections among all the
agents of the system. However, this strategy becomes
harder to maintain while the system grows. On the other
side, when agents have partial views of the environ-
ment, the agents are less sensitive to changes in the
scale. The trade-off is that the system becomes more

complex as it requires a strategy to make decisions in a

rationally-bounded context and deal with inconsistent

or approximated views of the environment.

4) Agent behaviours and deployment. To facilitate the
customisation of a deployment environment; the design
of the underlying agent behaviours should decouple
environment-specific operations from the common
operations given by the agent type. For example, fol-
lowing the ‘“‘separation of concerns™ principle [52],
the behaviour to trigger a temperature adjustment
should separate the rules that lead to specific lev-
els of temperature and the process to trigger the
changes, from the actual action that depends on
the available physical interfaces. This way, multiple

3)

VOLUME 9, 2021

functionally-equivalent agent instances can be
parametrised to run with easy portability along dif-
ferent hardware infrastructures. This approach fosters
quick reusability of pre-designed elements regard-
less of the concrete deployment environment, which
reduces the extra design effort required when there is
no MAS platform support. Evolution of core behaviour
is also possible with reduced impact on physical
interfaces.

IV. A REFERENCE ARCHITECTURE FOR CONTAINERISED
CONTROL AGENTS

This section presents a control architecture based on the
approach and considerations described in section III. We also
note that some of the ideas behind this architecture are
inspired by works such as [15] and [38].

A. SYSTEM VIEWPOINT

The Fig. 6 illustrates the system architecture that is being
proposed in this article. The key design principle is that
the control system is built from independent control agents,
composed of both, behaviours implementing the agent’s
interaction model, and atomic control behaviours, specific
to the entities or processes of the industrial system under
control. Multiple agent “boilerplates” are made out of these
behaviours and each of these boilerplates is defined as a
self-contained agent image that is deployed on-demand.

The agent boilerplates and their control behaviours cover
the different perspectives of interest of the industrial system.
The agents monitor and control the condition and perfor-
mance from each perspective. For example, Digital Asset
agents are linked to system elements such as machines,
telecommunication devices or any other assets or their

30517

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

Agent Images

ENE

FIGURE 7. Multiple realisations of the control reference architecture.

components. The Digital Space agents are mapped to the
spaces where the assets are located. The granularity of
the association between the agent and the assets or spaces
depends on the availability of the sensors and actuators.
These agents incorporate ad hoc behaviours for sensing and
controlling that interface with the available physical sensors
and capabilities of the asset or space. Likewise, other agents
addressing more functional perspectives include: the Process
Manager agents controlling one or several processes and
workflows of interest that are carried out to deliver services
or manufacture products. The Product Manager agents con-
trolling the manufacture of one or several individual products
(type of products) of interest. The Service Manager agents
control the provision of one or several individual services
(type of services) of interest. The control behaviours enable
collection of measurement data for creating views of the
industrial system with the metrics of interest from each
perspective. These views then enable monitoring and trig-
gering of the corresponding control actions. The individual
architecture of a control agent is discussed in section IV-B.

The system architecture does not include fundamental
structural relationships between agents. These are replaced
by communication and coordination flows that are defined
by the agent topologies and corresponding message proto-
cols. Hence, as depicted in Fig. 7, the realisations of this
architecture can implement different interaction models while
reusing as much as possible the control behaviours and the
specific interfaces with the elements under control. Moreover,
different interaction models can work for different situations
thus providing flexibility to the overall system.

Support functions related to the control system’s infras-
tructure can be either added to the core control agents or
composed in dedicated infrastructure agents. These func-
tions enable configuration, agent’s life cycle management and
evolution of the overall system. The agent launcher config-
ures agent’s behaviours to a particular context e.g. hardware
or network infrastructure and triggers the initialisation of an
individual agent. The Control Function Provisioner agents
trigger the creation of other control agents, they monitor their

30518

state via interaction model and support agent takeovers when
required as they have behaviours that interface with the Con-
tainer Management System. The Control System Optimisers
agents monitor the overall control system performance, based
on configured metrics of interest e.g. resource usage, commu-
nication latency, messages passed, etc; and trigger routines
for optimisation of the control agents or their interaction
models. This set of agents are then the main source of recon-
figuration and adaptation of the control system.

B. INTERNAL AGENT VIEWPOINT

The agent is a modular unit that is assembled on deploy-
ment given the configuration passed. This configuration
defines specific parameters of operation for the behaviours
and interaction model of the agent. As deployment is quick,
any substantial change in the agent structure or interac-
tion model leads to the agent being decommissioned and
a new instance with updated structure and behaviours is
deployed. Fig. 8 shows the simplified view of the internal
architecture of an agent representing an asset of an industrial
system. The key fundamental agent functions are covered
by ad hoc behaviours organised in four groups: observa-
tion, communication, control and decision making. Given
the configuration defined in the agent launcher, the specific
behaviours of the ones presented in Fig. 8 are deployed.
An agent can be deployed with all or a subset of the available
behaviours. The sensing behaviour enables processing of
the data streams coming from the configured data sources,
including the implementation of the interfaces with physi-
cal sensors deployed along an industrial system. Support-
ing actors preprocess (e.g. normalise or classify) the data
collected and manage the life cycle of the agent’s view of
the industrial system. Depending on the type of agent, this
view can be local or according to interaction model, consider
other agent’s collected data. The decision-making behaviours
drive the control action selection by defining the model and
criteria used for this selection. This selection might be as
simple or complex as required, for example based on rule-
based, probabilistic, neural networks or any other learning
models. The actuating behaviours link the available physical
and software-based capabilities (actuators), thus enabling the
activation of control actions and provide a message-driven
interface to these actions. The behaviours can be aggregated
or activated in runtime where they remain stable, however if
more significant changes are required, for example, upgrade a
pre-trained model with new meta-parameters and configura-
tion, a take-over process takes place where the containerised
agent is replaced by another one with the updated behaviours
and model.

The agent’s state is stored in a local repository, however
backup functions are intended to be defined as a specialised
actuating behaviour copying local state to decoupled reposi-
tories. This way the operation of the agent is not dependent on
remote repositories but it is also possible to instantiate a new
or changed version of the agent with a baseline of historical

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

(® DigitalAsset

Zinbox : Queue
°init() : void
°receive() : void

<«

(©) DALauncher
“ config : Map

° start() : void

Obseryation
1.*

R) View

1
|

(R) PreProcessing

° preprocess() : void
° parse() : void

° classify() : void

° reduce() : void °report() : void
© aggregate() : void °save() : void

Bview : Vector
Y targets : Vector

(B) Connection

(B Sensing

°init() : void “ protocol : Map

Y neighbours : Vector

° sense() : void
° update(sensings : Vector) : void

° discovery() : void
° advertise() : void
© update() : void

I
I
I
I
I
I
:
° sample() : void |
I
I
I
I
I
I
I
I
I

L\;ﬁ,\ ””””””””””” s DecisionMaking

(B) ReactiveDM (B) ProactiveDM

© targets : Vector “model : __
© parameters : Vector Y parameters : Vector
©records : Vector < init() : void

© check(sample : Vector) : void © exploit(view : Vector) : void
° treat(sample : Vector) : void °report() : void

CoD munication“

(B) Userinterface

2 endpoints : Vector
Y protocol : Map
°receive() : void

° dispatch() : void

(B) Actuating

° query() : void

1
°init() : void i
° trigger() : void .

FIGURE 8. Containerised Agent: Simplified Structural View Of The Internal Architecture. Stereotypes as follows: A) Agent,

B) Behaviour, R) Supporting Actor, C) Auxiliary Class.

state, for example in the case of an update of the agent’s
decision models.

V. CASE STUDY: SUPERVISORY CONTROL OF NEXT
GENERATION NETWORK INFRASTRUCTURE

This section introduces a case study of a MAS-based super-
visory control system applied to next generation telecom-
munications network infrastructure. The study is intended
to illustrate the characteristics of an agent-based control
approach that relaxes the MAS platform dependencies as
discussed in sections III and IV.

A. CASE STUDY DESCRIPTION

1) NEXT GENERATION DIGITAL INFRASTRUCTURES

Fig. 9 illustrates an example of a next generation digi-
tal infrastructure where multiple networks, not only core
telecommunications but also wireless sensor and actuator,
virtual or even workforce networks, enable the provision of
a variety customisable and heterogeneous digital services
with some agreed service levels (SLAs). Beyond physical
and software-defined telecom networks (SDN) [53] and the
convergence of mobile and fixed access networks [54], other
networked systems such as the workforce or the supply man-
agement systems are also key components of the infrastruc-
ture to enable seamlessly and agile service delivery. On the
right side of Fig. 9, supervising this infrastructure, an instance
of an agent-based control system enables decision-making
considering the data gathered at each different network
context.

VOLUME 9, 2021

The main type of service of interest is the data trans-
port across different locations of the infrastructure network.
Instances of this service define specific requirements of
bandwidth and latency, among other properties. The data
is transported along multiple sub-networks, some of them
with different operators and generally different low-level
control entities, such as software defined controllers. Given
the huge amounts of data generated by these systems, ensur-
ing that service provision meets customer expectations (e.g.
as set in the SLAs) and business goals while considering
the operational context, becomes difficult to achieve without
automation [55]. A supervisory control —above other existing
local network control functions— is required to integrate the
multiple perspectives and consolidate control actions given
this integrated view.

2) REQUIREMENTS OF NEXT GENERATION DIGITAL
INFRASTRUCTURES

Together with academic and industrial partners of the
NG-CDP research programme we identified requirements of
the future digital infrastructures. We highlight here those key
requirements that have implication on the control system and
that make the approach discussed in section III particularly
useful in this case.

o Ever growing infrastructure and third-party plat-
form risk aversion. Telecom network infrastruc-
tures are inherently distributed and in permanent

3 https://www.ng-cdi.org/

30519

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

Smart
Meter:
EheDes

Met ings data trar

Electricity Supplier

Container-based
Industrial Control

g

ission service I

Next Generation Digital Infrastructure

System

/

Network Slice 1

Network Slice 2

Sensors

3 3 ~ . Entity mapping
Termometers Teell U T -- @
i Digital Space
Physical Context Management and Control ; o Ager‘\)t

Sites

Network Slice n

/ Service Network ™\
N Control
\ SLAs

Service Manager

Asset Control

|--{2]

Digital Asset Agent
- 7

Space Control

-0

FIGURE 9. Case study environment: Digital infrastructure and container-based control

system.

evolution [56], [57]. It is hard to anticipate the dimen-
sions that the infrastructure might reach. For this reason,
it is risky and hence undesirable to tie key supervisory
control functions to a single third-party MAS platform
because there is no certainty about the platform’s ability
to evolve at the speed and dimensions the infrastructure
and control system might require.

o Geographically distribution and effortless portability.
Network infrastructures have been and will continue to
be geographically distributed. Moreover the computing
resources that enable their control are also distributed.
It is desirable that control system components can be
deployed and ported along the cloud or edge computing
resources with minimal effort and according to where
it is more advantageous from a business or end-user
perspective.

o Elasticity and fine-grained resource monitoring and
allocation. The network infrastructures are expected
to be elastic, leveraging on software-defined networks
that can grow or shrink on demand [58]. Likewise,
it should be possible to scale up or down the control
system, according to the network infrastructure needs.
Part of this is assumed for agent-based control sys-
tems, as agents can be started or shut down on demand.
However, determining the best allocation of resources
to agents is only possible by individually monitor-
ing agent’s resource needs and usage. This way, extra
resources can be provisioned for the control system
when required and also freed when unused.

B. INTRODUCTION TO CONTROL SOLUTION APPROACH
A realisation of the reference architecture presented in
the section IV was used to implement a control system

30520

prototype for supervision of the operation of an instance of a
digital infrastructure. The supervisory control is the topmost
level control function with two main monitoring and con-
trol perspectives: a) monitoring and managing the physical
condition of the assets that are involved in the delivery of
the digital services and b) assessing and adjusting the ser-
vice performance with reference to the SLAs. Digital Asset
agents are mapped one-to-one to the network elements and
monitor their local performance: in/out throughput given the
existing links and connections of the network element with
others. These agents also monitor the physical condition of
the assets (namely board temperature, system errors packets,
CPU usage and RAM usage, among others). Control actions,
such as re-routing of traffic flow among different paths or pro-
vision of new network resources, are triggered via REST API
to low-level controllers (e.g. SDN Controller and Container
Manager).

The Service Provision Control behaviours include algo-
rithms for both monitoring the performance of a set of
services and triggering the actions to ensure the agreed per-
formance. Algorithm 1 shows the routines for calculating net-
work throughput variation AT after the Digital Assets have
reported their state. The algorithm consolidates measure-
ments from Digital Assets involved in the service delivery and
compares their performance with each other. If the variation
A for a given time window (wg, w,) is higher than the agreed
SLA thresholds it triggers the defined action, in this case
the replacement of the under performing Digital Asset. This
algorithm shows a simplified version, but different actions
can be triggered by matching the observed values.

This control behaviour that can be either implemented by a
dedicated Service Manager agent, or a selected Digital Asset
agent. In fact, three variations of the control architecture

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

Algorithm 1 Monitoring of Throughput Variation (AT)

input: wg, we, V, o, p
for [; in L do
A <—alV, 1, ws, we)
X; < m(A)
G« 0,K <0,
B < n(V,wg, we)
for B; in B do
C <« c(V,Bi,ws, w,)
C' <« c(V, B}, wg, we)
A; =m(C") — m(C)
if A; > « then
r(poi)
K < [K, B;]

Wy <— We

were implemented. The first one, named H (Hierarchical),
defines a hierarchy between the Digital Asset agents (DA)
and a Service Manager (SM). The other two architectures,
are connected resembling the topology ¢ of the network
under control. In the architecture named L, (Leader with
topology t), one of the DAs is the leader that takes over
the Service Provision Control behaviour instead of a ded-
icated SM. In the architecture named D; (Distributed with
topology 1), the leader responsibilities are distributed locally
among DAs that exchange data collected with neighbours.

The prototype* of the control system was implemented in
Scala using the akka actor framework® and the agents are
packed as docker® containers.

C. EVALUATION OF THE EFFECTIVENESS OF THE
CONTAINER-BASED MAS APPROACH TO

SUPERVISORY CONTROL

The evaluation of the proposed approach is broken down in
two parts. The first part assesses the prototype in operation
within a realistic but small scale environment. Because of
complexity and availability of resources this is only possible
to analyse at small scale. The second part aims to analyse
behaviours of the system at larger levels of scale, especially
with regards to control agent’s resource management (which
is linked directly to the ability to ease portability and elastic-
ity). In both parts of the evaluation, the statistical significance
of differences among architectures is checked according to
these hypothesis: Hy: The mean usage of resources is the
same among architectures. H4: The mean usage of resources
is different among architectures.

1) SMALL SCALE EVALUATION

A network with the topology presented in Fig. 10 was emu-
lated to serve as testbed for the control prototype. This partic-
ular topology was chosen as it reproduces a typical topology
that appears in this type of network infrastructures [59]. This

4Github repository available upon request.
5https://developer.lightbend.com/guides/akka—quickstart—sc:ala/

6https://Www.docker.com/resources/what-container

VOLUME 9, 2021

TABLE 1. Symbols Used in the Algorithm 1.

Symbol Description

Ws Time Window Start (Last Time Window End)

We Time Window End (Current time)

\%4 Set of measurements reported by Digital Assets

p Function Provisioner Address

m(A) Function that calculates the mean of the given set.
L Set of Service Level Agreements Metrics

Function that filters measurements reported for metric
l; during interval: ws — we

Function that returns set of Digital Assets that reported
measurements during interval.

Function that filters measurements by the given set of
Digital Assets during interval.

a(V, 1, ws, we)
n(V, ws, we)

c(V, B, ws, we)

B; Subset containing the Digital Asset b;

Bg Subset of Digital Assets not containing b;

o Parameter that indicates the tolerance threshold for
triggering replacement
Function that asks function provisioner

(p, B;)

p to replace set of Digital Assets B;

environment was implemented in mininet’ with Ryu SDN
Controller.® Each node corresponds to an emulated switch,
the links between them were set with different bandwidth and
delays. Ryu performs basic data flow control capturing traffic
measurements through the emulated network and making
them available via REST API. Over the emulated network,
aregular flow of data traffic is simulated using iperftool. The
condition of the underlying assets over which each switch
is deployed is simulated by a SimAsset. We built this as a
Scala actor that exposes a data stream from synthetic CSV
files, randomly generated from datasets provided by indus-
trial partners. There is one SimAsset per switch and the data
is sensed by a matching Digital Asset agent via one of their
sensing behaviours. On deployment of the control system,
one agent is created and associated to each switch. This way
the supervisory control system observes traffic and network
state via Ryu SDN Controller and physical condition via the
SimAsset.

The control system prototype was run eight times for each
variation of the architecture while completing the following
scenarios:

o Standard Operation: The Ryu SDN Controller drives
traffic considering a combination of shortest path
and highest bandwidth. Supervisory control monitors,
records and compares throughput against SLAs. Partic-
ularly, in this scenario the control system supervises that
connectivity and data traffic between hosts connected to
switches 8 and 20 (Fig. 10) is within parameters defined
in the SLAs.

o Condition-driven Operation: The node 7 in Fig. 10,
is simulated to fail due to overheating. The Supervisory
control detects this condition degradation and triggers
update of data flows to drain the traffic out of switch 7.

2) LARGE SCALE EVALUATION

Agents can be deployed across large infrastructures as
required, only if there are enough resources available. Hence,

7http://mininet.org/
8https :/[ryu-sdn.org/

30521

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

FIGURE 10. Network used in the emulation. Generated using the
Newman-Watts-Strogatz model [60] with n =25, k =3 and p = 0.4.

monitoring the resources each agent uses is critical to deter-
mine their demands. Likewise, the control system’s ability
to operate elastically, is only possible if resources used by
agent’s can be provisioned and freed on-demand. The aim of
this part of the evaluation is to analyse whether the approach
explored facilitates overall management of control resources
at a large scale. The following experiments were carried out:

o Portability & Resource Monitoring The aim was to
deploy the control system prototype with hundreds of
agents and monitor their resources. This enables to
evaluate how easy it is to port and scale the system
and monitor each agent’s resources. To simplify the
experiment we use a ring topology for the emulated
network and focus on architectures H (Hierarchical)
and D, (Distributed with a ring topology). The control
system was ported from a laptop (Intel(R) Core(TM) i7-
8550U CPU @ 1.80GHz with 16Gb of RAM) to a server
(Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with
66 Gb of RAM). Resource monitoring was implemented
using Prometheus’ and Kamon,'? reporting to tailored
Grafana dashboards.!!

o Deployment Strategy As system containers enable differ-
ent strategies for deployment of heterogeneous agents,
this experiment aims to analyse the effect of the strategy
when the number of agents increases. The heterogeneity
here is evidenced by the resources (RAM) required by
each agent and the effect is quantified in terms of the cost
of running the control system which is directly propor-
tional to the resources used. Two strategies are studied:
one with mixed agent types in a single deployment unit
(1-to-Many), which is normally the case in conventional
solutions, and the other one with one deployment unit

9https://prometheus.io/
10https ://kamon.io/
1 https://grafana.com/

30522

TABLE 2. On-Demand Resource Simulation Parameters.

Parameter Name Value
Quantity of agents [5, 10, 50, 80, 120, 400]
Proportion of stable agents [0.2, 0.5, 0.8]

Transient agents operation 20, 40. 60]

(time units)
Stable: Max 0.9

Transient: Max 0.5

Agents demand change rate Poisson process with A = 0.2
Time steps 1000

Repetitions 8

Resource usage profiles:

TABLE 3. Small Scale: Agent’s Summary Statistics.

RAM(MB) CPU (%) Tx (MB)
Topo. T s P z s P T s P
H 136.4156 7.0973 0.006 13.58 2.04 0.009 0.0651 0.0203 0.008
Lgyw 150.5052 15.4495 0.002 16.35 3.42 0.005 0.0979 0.0366 0.002
Dgw 147.2075 15.7945 0.003 15.45 4.03 0.060 0.0937 0.0446 0.011

per agent (1-to-1), which is the strategy used in the
prototype implementation. Control systems with three
proportions of stable/transient agents were simulated:
20/80, 50/50 and 80/20. The agents whose resource
demands are stable, are those that control, for example,
physical assets that are up and running during most of
the time; and agents that are transient, control, for exam-
ple, temporal entities or assets. In the context of digital
infrastructures, these can correspond to network ele-
ments of temporal networks set up on demand for music
or sports events. Resource demands for each agent are
modelled as Poisson processes, where an event indicates
a variation in the resource consumption pattern. Details
of the simulation parameters are presented in Table 2 and
the results are discussed in the next section.

D. RESULTS & DISCUSSION

1) SMALL SCALE

The supervisory control collected and aggregated through-
put data, enabling the monitoring of the network ser-
vices via dashboards as the one presented in Fig. 11.
It highlights the aggregated service view created out of the
measurements collected by individual Digital Asset (DA)
agents. In the standard operation scenario, all three vari-
ations of the architecture were effective in enabling traf-
fic via the path [8, 7,2, 1, 18, 19, 20] (See Fig. 10). When
the switch 7 was simulated to fail, the new path selected
was [8,9, 10, 16, 17, 18, 19, 20]. A summary of the resource
usage and communication overhead, for the eight runs,
by each architecture is presented in Table 3. The hierarchical
architecture (H) shows the lowest resource usage (RAM and
CPU) on average. To check whether these differences are sig-
nificant, we first applied the Shapiro normality test, obtaining
the p-values shown in column p of Table 3. Such a normality
hypothesis is rejected for all the groups taking part in the
comparison, given the small value of the p-values. Even for
the group with a higher p-value, CPU usage p-value= 0.06,
it is not considered high enough to avoid rejection of the

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

BGR 88 suvervisory Control and Knowledge Demo - e [2] Ouswmme a z

FIGURE 11. Supervisory control dashboard, highlighting Service View
panel with throughput for p2p connection services as reported on
real-time by the prototype.

normality hypothesis. Hence, a suitable, non-parametric test
for the comparison of groups is Friedman test. The p-value
for the comparison of the RAM groups is 0.0439 which leads
to a rejection of the hypothesis of groups having equal RAM
mean. However, the post-hoc analysis for CPU and bytes
transferred (Tx), shows that the difference is not significant to
reject that these 2 groups have equal mean, having a p-value
of 0.1969. The RAM differences can be explained as the
DA agents in H have lower workload as only the SM agent
consolidates measurements and monitor SLAS.

This experiment shows that conventional platform ser-
vices, such as agent discovery, can be implemented with the
support of a system-based container framework, in this case
using Docker. This way we address the first requirement
identified in V-A2 as there is no fundamental dependency
on a MAS platform. In addition, the agents have their own
local registries of agents rather than a global one. This way
multiple connection topologies and coordination protocols
can be implemented with reduced changes among configura-
tions. For example, in H, each agent has only the SM address
whereas in Ly, and Dy, architectures, every DA has as many
agent neighbour as links exist in the switch being controlled.
We have seen this also causes DA agents of H to have a lower
RAM usage than in other architectures but making the SM a
single point of failure (SPoF). However, this is not a default
SPoF, because the control system can easily be adjusted by
moving service control behaviours to DAs and updating their
local registries with convenient neighbours, as is the case of
Ly, and Dy,, architectures.

Each agent container is deployed with the same Scala
classes and there is a parameter, passed at launching, that
indicates which behaviours (Scala traits) should be enabled
in each agent, this makes the system flexible as it is easy
to switch between agent architectures, just before starting
each agent. The agent container image size is 117MB, and
Table 3 shows that resource usage varies with the archi-
tecture. For reference, we compare these values with those
of a basic installation of the JADE platform. This uses in
the order of 70MB of RAM while idle and the size of a
JADE image container is around 82MB. So it shows that the
values obtained in our prototype are not ideal but still can
be deployed in constrained devices such as a Raspberry Pi.

VOLUME 9, 2021

Furthermore, there are active efforts towards making con-
tainer operating systems lighter, breaking them down into
libraries [45] and also for enabling customisation of execution
environments.

2) LARGE SCALE
The mean RAM usage profile per agent in two architectures
with up to 300 agents is presented in Fig. 12. Overall, the fig-
ures show requirements of less than 170MB, on average, per
agent of each system, regardless of the architecture and the
number of DA agents (number of assets). After concluding
that normality could not be assumed for the analysed groups,
we applied Friedman tests to check whether the differences
in RAM usage within the same architecture but different
quantities of agents were significant. In this case, we obtained
a p-value of 0.001031 for H and 0.000079 for D,, meaning
that, the mean RAM usage per agent and architecture is
the same regardless of the quantity of agents (Hp accepted).
Evaluating differences of the RAM per architecture for a
given quantity of agents, we found that p-value was 0 for
all the quantities analysed. This means there are differences
among RAM usage per architecture (Hy rejected), which
is also shown by the solid lines in Fig.12. However, when
comparing the overall mean RAM usage per agent and archi-
tecture, it is only possible to say that H architecture has lower
RAM requirements (around 40MB less) per agent than the D,
architecture. Only by monitoring individual agent usage per
type of agent, we realise that SM agent has higher resource
demands that grow linearly as the system is scaled up (inset
in Fig. 12). By design this is expected, as responsibilities of
Service Manager mean a higher workload that depends on
the number of agents. However, this might not be always
clear, for example, if the frequency of certain operation in a
particular asset is higher than in others, it might cause a higher
workload in the controlling DA agent. This type of demands
are even more difficult to pick when the number of agents
grows. Defining agents as single deployment units (contain-
ers) independent of a MAS platform, enables to set resource
usage limits per agent. This way thresholds can be monitored
and controlled to determine which agents require tuning or
extra resources.

For the cost analysis, we define A, as the Cost Advantage
of one deployment strategy ‘a’ over another ‘b’, as follows:

Ay =251 M
Cp

where C, is the mean cost of the system for the strategy ‘a’
normalised by the number of agents and the observation time.
The mean cost is calculated as the mean of the resources used
by all the agents in the system. Thus the cost advantage shows
the proportion of the benefit (cost savings) of one strategy ‘a’
over the reference strategy ‘b’. The bars in Fig. 13 show the
cost advantage of a 1-to-1 agent-node deployment strategy,
with on-demand provisioning, over a 1-to-Many deployment
strategy, in environments with three combinations of sta-
ble/transient agents. There is an advantage in the 1-to-1 over

30523

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

Distributed (Dr)

=
5}
=}
T

%
°

o
c
(7]
=)
<<
o
S0 Hierarchical (H)
o lerarcnical 1
= . .
= =]
é <50 Service_Manager (SM)
S120 | W0 E -+
Q|| | e
= 300 —
200 e Digital Asset (DA)
— e e e — — G — e e
100
00 | 5(IJ 100 | 150 | 200 | 250 30.0
50 100 150 200 250 300

Quantity of Assets (DA Agents)

FIGURE 12. Mean RAM usage for two architectures with up to 300 DA
agents. The inset shows mean usage per type of agent in the Hierarchical
architecture.

0.5

e
S

[

o

&5 03 Proporticn of Agents
% (Stable/Transient)

= [20/80

F o2 B 50/50

@ = 80/20

o

]

e
.

0

5 10 50 80 120 200 400
Quantity of agents

o
o

FIGURE 13. Cost advantage of 1-to-1 over 1-to-M deployment strategies
for three proportions of stable/transient agents. 1-to-1 strategy:
on-demand provisioning of agents deployed in individual containers.
1-to-M strategy: provisioning of one stable container for deployment of
multiple agents.

the 1-to-M strategy in all the cases analysed except when
the there are 400 agents and 80% of them stable. When the
proportion stable/transient is 20/80, this cost advantage of
1-to-1 strategy is consistently close to 40% of the cost of the
1-to-Many strategy. However, it decreases and becomes more
variable when the proportion of stable/transient agents is
50/50. Even, when the most of agents are stable the advantage
is reduced to less than 10% and no advantage with greatest
number of agents. The standard deviation for the eight runs is
plotted on top of each bar. This experiment confirms the intu-
ition that 1-to-1 deployment strategy is more cost-effective
in scenarios with high number of transient agents and also
shows the potential magnitude of the benefit considering mix
of agents and scale.

Reflecting on the second and third requirements in
section V-A2, these experiments show that the ability to mon-
itor individual agents together with the isolation of environ-
ment facilitates the portability of agents to where resources
are available. Likewise, as agents are individual deployment
units the system can scale up and down bringing potential cost
benefits during operation.

30524

There might be natural trade-offs between these resulting
benefits and the added complexity over platform-dependent
approaches. This complexity is more evident with highly
heterogeneous agents. Thus, more deployment units make
more demanding the administration of the control system.
If a general security policy, applied over the resources
where the agents are deployed, is not enough, then agents
might require individual policy configurations. Furthermore,
if agents are deployed along untrusted environments, secure
protocol suites are necessary to protect inter-agent commu-
nication. As consequence, these situations need to be con-
sidered also during the control system engineering process,
making it more demanding too.

Nevertheless, these challenges have been identified by
the microservices community and are actively investigated.
There are tools that enable automation of administration
tasks via scripts and the management swarms or fleets of
containerised services. Deploying agents in their own runtime
environments can eventually facilitate the use of library oper-
ating systems (OS) [45]. This way agents can be more secure
by reducing the potential attack surface of the underlying
OS. However, security is an important requirement of control
systems that deserves wide attention beyond the scope of the
present study.

E. LESSONS LEARNED
Although we presented a case in the context of telecom-
munication infrastructure services, this approach is closely
aligned with agility and capability-based flexibility principles
of cloud manufacturing [1] and the general system architec-
ture for Industry 4.0 applications [61]. Furthermore, the shift
from pure goods production towards mixed product-service
business models [62], brings the service-oriented scenarios
presented in this case study, closer to the manufacturing
industry.

We explored the engineering of agent-based control sys-
tems by relaxing dependencies on conventional MAS plat-
forms, the case study helped us to bring the following

reflections:
o Dynamic Control. As industrial systems are increasingly

dynamic, it becomes more relevant for the control sys-
tem to have the flexibility to change its structure. The
approach explored provides flexibility to easily change
agent system topologies and for communication there is
no need of a single agent directory.

e Decoupled Services. One benefit of the approach
explored is that the supporting tools for agent mon-
itoring, are not integrated to the MAS platform, but
are separate services, running in their own contain-
ers. This facilitates the replacement of such tools (e.g.
Prometheus and Grafana) for alternatives without requir-
ing to migrate agents to another MAS platform. So the
services normally offered by a single MAS platform can
be consumed from specialised of-the-shelf solutions.

o Automated Asset Generation. Due to the container-based
virtualisation, new agents can be created from the same

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

template in an automated process, this approach enables
the control system to grow in the number of agents as
required and to move them along the available infras-
tructure. Another consequence of these characteristics
is that migration of control systems can be eased pro-
gressively per control function, rather than requiring a
big-bang approach.

e Programming Language Independence. Although all
our agents were developed in Scala, the discussed
approach offers potential for programming language
independence as the core requirement for interaction
with other agents of the control system is to be able to
send/receive messages according to the ad hoc proto-
col. Depending on the application context, secure proto-
cols might also be required as discussed in section V-D.

o Customisation & Resource Usage Improvement. The
image size and resource usage profiles of the agent con-
tainers is an area where significant improvements can be
made. Key to improve this aspect is the availability of
more modular and customisable runtime environments,
together with Unikernels and library operating systems.
Tools for easing development in different programming
languages using these technologies are still insufficient.

o Complementing MAS Platforms. Container-based vir-
tualisation can be used as a complement of MAS plat-
forms. However, there are platforms that implement
the container pattern at application level. Working with
two levels of containers increases complexity of the
development process.

o Hard Real-time Limitations Although system containers
do not offer hard real-time performance that some indus-
trial applications require, there are multiple ongoing
efforts to address this issue [63].

VI. CONCLUSION AND FUTURE WORK

This article introduces an approach for the engineering
of agent-based control systems while relaxing dependen-
cies in MAS platforms. In this approach each agent is a
self-contained application that is deployed independently of
others. The article also presents a reference control archi-
tecture, based on the proposed approach, where decoupled
control behaviours are composed into agent images that can
be configured for activation on start up. As a result, each
agent structure can be easily replicated or deployed along the
available hardware infrastructure.

The feasibility and expected performance of this approach
was demonstrated with a case study for the implementation
of a supervisory control system in digital network infras-
tructures. Three variations of the architecture were imple-
mented in a prototype which monitors and controls the
condition-driven operation of an emulated network. We tested
the ease of portability and ability to monitor resources with
specialised decoupled off-the-shelf solutions that substitute
equivalent MAS platform services. We found containerised
agents are more demanding in terms of computing resources
than traditional agents embedded in agent platforms, however

VOLUME 9, 2021

this was not a problem for the studied case and there is room
for optimisation. Moreover, a control system based in con-
tainerised agents can easily and quickly change its underlying
topology and deployment nodes, which simplify deployment
of agents across available computing infrastructure. The pro-
posed approach also facilitates monitoring of resource usage
for each individual agent.

In addition, we analysed the effect of defining agents as
individual deployment units, in the overall cost of operation
of the control system. The simulation results showed that this
approach is cost-effective especially when there is a higher
proportion of transient agents than stable ones in the control
system.

A route for future works is to explore the creation of
agents based on Unikernels. To date, tools for creation and
monitoring of Unikernels are scarce and still at an early stage
which represents a barrier for the evaluation. Additional lines
of work are to address use cases in other domains, such as
manufacturing, and to evolve existing prototype to allocate
agents implemented in multiple programming languages.

ACKNOWLEDGMENT

The authors would like to thank project partners for the
fruitful discussions, especially with colleagues of BT and the
University of Lancaster. Likewise, they would also like to
thank Boyue Zhang from the Computer Laboratory of the
University of Cambridge who contributed to the development
of the prototype and the tools used in the case study.

REFERENCES

[1] L. Zhang, Y. Luo, F. Tao, B. H. Li, L. Ren, X. Zhang, H. Guo,
Y. Cheng, A. Hu, and Y. Liu, ““Cloud manufacturing: A new manufacturing
paradigm,” Enterprise Inf. Syst., vol. 8, no. 2, pp. 167-187, 2014.

[2] Virtual Network Functions Architecture, ETSI Ind. Specification Group,
Sophia Antipolis, France, 2014.

[3] S. Karnouskos, L. Ribeiro, P. Leitao, A. Luder, and B. Vogel-Heuser,
“Key directions for industrial agent based cyber-physical production sys-
tems,” in Proc. IEEE Int. Conf. Ind. Cyber Phys. Syst. (ICPS), May 2019,
pp. 17-22.

[4] O. Shehory and A. Sturm, Agent-Oriented Software Engineering: Reflec-
tions on Architectures, Methodologies, Languages, and Frameworks.
Springer, 2014, pp. 1-331.

[5] P. Di Francesco, P. Lago, and 1. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” J. Syst. Softw., vol. 150, pp. 77-97,
Apr. 2019.

[6] M. Richards, Software Architecture Patterns, H. Scherer, Ed. Sebastopol,
CA, USA: O’Reilly, 2015.

[7]1 B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of
manufacturing: A review,” J. Manuf. Syst., vol. 39, pp. 79-100, Apr. 2016.

[8] H. A. Abbas, “Future SCADA challenges and the promising solution:
The agent-based SCADA,” Int. J. Crit. Infrastruct., vol. 10, nos. 3-4,
pp. 307-333, 2014.

[9]1 Systems and Software Engineering—Systems and Software Quality
Requirements and Evaluation (SQuaRE)—System and Software Quality
Models, Standard ISO/IEC 25010:2011, ISO/IEC, 2011.

[10] ISO/IEC/IEEE International Standard—Systems and Software
Engineering—Vocabulary, Standard ISO/IEC/IEEE 24765:2017(E),
2017, pp. 1-541.

[11] A. V. Kapitanov, “Manufacturing system flexibility control,” Procedia
Eng., vol. 206, pp. 1470-1475, Jan. 2017.

[12] P. Leitao, “An agile and adaptive holonic architecture for manufacturing
control,” Ph.D. dissertation, Univ. Porto, Porto, Portugal, 2004.

30525

IEEE Access

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Jogalekar and M. Woodside, “Evaluating the scalability of distributed
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 6, pp. 589-603,
Jun. 2000.

M. Herrera, M. Pérez-Herndndez, A. K. Parlikad, and J. Izquierdo, ‘“Multi-
agent systems and complex networks: Review and applications in systems
engineering,” Processes, vol. 8, no. 3, p. 312, Mar. 2020.

P. Leitao and F. Restivo, “ADACOR: A holonic architecture for agile
and adaptive manufacturing control,” Comput. Ind., vol. 57, no. 2,
pp. 121-130, Feb. 2006.

R. M. da Silva, M. F. Blos, F. Junqueira, D. J. S. Filho, and P. E. Miyagi,
“A service-oriented and holonic control architecture to the reconfiguration
of dispersed manufacturing systems,” in Proc. Doctoral Conf. Comput.,
Elect. Ind. Syst., in IFIP Advances in Information and Communication
Technology, vol. 423, 2014, pp. 111-118.

F. Bergenti, G. Caire, and D. Gotta, “Large-scale network and service
management with WANTS,” in Industrial Agents: Emerging Applications
of Software Agents in Industry. Amsterdam, The Netherlands: Elsevier,
2015, pp. 231-246.

H. Elshaafi, M. Vinyals, 1. Grimaldi, and S. Davy, “Secure automated
home energy management in multi-agent smart grid architecture,” Technol.
Econ. Smart Grids Sustain. Energy, vol. 3, no. 1, Dec. 2018, Art. no. 4.

F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade—A white
paper,” EXP—In Search Innov., TiLab Tech. Mag., Italy, vol. 3, no. 3,
pp. 20-31, 2003.

O. Boissier, R. H. Bordini, J. E. Hiibner, A. Ricci, and A. Santi, “Multi-
agent oriented programming with JaCaMo,” Sci. Comput. Program.,
vol. 78, no. 6, pp. 747-761, Jun. 2013.

R. Ronnquist, “The goal oriented teams (gorite) framework,” in Proc. Int.
Workshop Program. Multi-Agent Syst. Berlin, Germany: Springer, 2007,
pp. 27-41.

K. Kravari and N. Bassiliades, “A survey of agent platforms,” J. Artif.
Societies Social Simul., vol. 18, no. 1, p. 11, 2015.

C.-V. Pal, F. Leon, M. Paprzycki, and M. Ganzha, ““A review of platforms
for the development of agent systems,” 2020, arXiv:2007.08961. [Online].
Available: http://arxiv.org/abs/2007.08961

A. Sturm and O. Shehory, “The evolution of MAS tools,” in Agent-
Oriented Software Engineering. Berlin, Germany: Springer, 2014,
pp. 275-288.

F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE: A software
framework for developing multi-agent applications. Lessons learned,” Inf.
Softw. Technol., vol. 50, nos. 1-2, pp. 10-21, Jan. 2008.

FIPA, Technical Committee. Architecture Group, “FIPA abstract archi-
tecture specification,” Found. Intell. Phys. Agents, Geneva, Switzerland,
Tech. Rep. SC00001L, 2002.

J.D.Jong, L. Stellingwerff, and G. E. Pazienza, “Eve: A novel open-source
‘Web-based agent platform,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 2013, pp. 1537-1541.

F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems With JADE. Hoboken, NJ, USA: Wiley, 2007.

Q. He, J. Yan, Y. Yang, R. Kowalczyk, and H. Jin, “A decentralized ser-
vice discovery approach on peer-to-peer networks,” IEEE Trans. Services
Comput., vol. 6, no. 1, pp. 64-75, Jun. 2013.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm intell
swarm robotics: A review from the swarm engineering perspective,” in
Swarm Intelligence, vol. 7, no. 1. Springer, 2013, pp. 1-41.

A.Ricci, O. Boissier, A. Ciortea, R. H. Bordini, S. Mayer, and J. F. Hiibner,
“Engineering scalable distributed environments and organisations for
MAS,” in Proc. Int. Joint Conf. Auton. Agents Multiagent Syst. (AAMAS),
vol. 2, 2019, pp. 790-798.

A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa,
I. Beschastnikh, and J. Rubin, “Supporting microservice evolution,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 539-543.

S. Newman, Building Microservices: Designing Fine-Grained Systems,
M. Loukides and B. MacDonald, Eds., 1st ed. Sebastopol, CA, USA:
O’Reilly, 2015.

J. Thones, “Microservices,” IEEE Softw., vol.
Jan./Feb. 2015.

T. Yarygina and A. H. Bagge, “Overcoming security challenges in
microservice architectures,” in Proc. IEEE Symp. Service-Oriented Syst.
Eng. (SOSE), Mar. 2018, pp. 11-20.

S. Sarkar, G. Vashi, and P. P. Abdulla, “Towards transforming an industrial
automation system from monolithic to microservices,” in Proc. IEEE
23rd Int. Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2018,
pp. 1256-1259.

32, no. 1, p.116,

30526

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

(45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi,
“IoT applications: From mobile agents to microservices architecture,” in
Proc. Int. Conf. Innov. Inf. Technol. (IIT), Nov. 2018, pp. 117-122.

T. Leppinen, C. Savaglio, L. Lovén, T. Jarvenpdi, R. Ehsani, E. Peltonen,
G. Fortino, and J. Riekki, “Edge-based microservices architecture for
Internet of Things: Mobility analysis case study,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-7.

R. W. Collier, E. O. Neill, and G. M. P. O. Hare, “MAMS: Multi-agent
MicroServices,” in Proc. World Wide Web Conf., 2019, pp. 655-662.

R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in Proc. IEEE Int. Conf. Cloud
Eng. (ICE), Mar. 2015, pp. 386-393.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and vir-
tual machines at scale: A comparative study,” in Proc. 17th Int. Middleware
Conf., 2016, pp. 1-13.

R. Dua, A. R. Raja, and D. Kakadia, ““Virtualization vs containerization
to support PaaS,” in Proc. IEEE Int. Conf. Cloud Eng. (ICE), Mar. 2014,
pp. 610-614.

H. Kang, M. Le, and S. Tao, “Container and microservice driven design for
cloud infrastructure DevOps,” in Proc. IEEE Int. Conf. Cloud Eng. (ICE),
Co-Located With 1st IEEE Int. Conf. Internet-Things Design Implement.
(IoTDI), 2016, pp. 202-211.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Softw., vol. 33, no. 3, pp. 94-100, Apr. 2016.

A. Madhavapeddy and D. J. Scott, “Unikernels: The rise of the virtual
library operating system,” ACM Queue-Distrib. Comput., vol. 11, no. 11,
p. 30, 2013.

T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Griiner,
“Container-based architecture for flexible industrial control applications,”
J. Syst. Archit., vol. 84, pp. 28-36, Mar. 2018.

F. Hofer, M. A. Sehr, A. Iannopollo, I. Ugalde, A. Sangiovanni-Vincentelli,
and B. Russo, “Industrial control via application containers: Migrating
from bare-metal to IAAS,” in Proc. IEEE Int. Conf. Cloud Comput.
Technol. Sci. (CloudCom), Dec. 2019, pp. 62-69.

S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent Systems for
Manufacturing Control. Berlin, Germany: Springer, 2004.

H.-H. Choi and J.-R. Lee, ““Local flooding-based on-demand routing pro-
tocol for mobile ad hoc networks,” IEEE Access, vol. 7, pp. 85937-85948,
2019.

R. Jabbari, N. Ali, and K. Petersen, “What is DevOps? A systematic review
on definitions and practices,” in Proc. Sci. Workshop XP (XP Workshops),
2016, pp. 1-11.

L. Ribeiro, The Design, Deployment, and Assessment of Industrial Agent
Systems. Amsterdam, The Netherlands: Elsevier, 2015.

W. L. Hirsch and C. V. Lopes, ‘“Separation of concerns,” Col-
lege Comput. Sci., Northeastern Univ., Boston, MA, USA, Tech.
Rep., 1995.

S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Implemen-
tation challenges for software-defined networks,” IEEE Commun. Mag.,
vol. 51, no. 7, pp. 3643, Jul. 2013.

F. Leitdao, R. D. C. Ros, and J. R. I. Riu, “Fixed-mobile convergence
towards the 5G era: Convergence 2.0: The past, present and future of FMC
standardization,” in Proc. IEEE Conf. Standards Commun. Netw. (CSCN),
Oct. 2016, pp. 1-6.

V. Q. Rodriguez, F. Guillemin, and A. Boubendir, “Automating the
deployment of 5G network slices with ONAP,” 2019, arXiv:1907.02278.
[Online]. Available: https://arxiv.org/abs/1907.02278

A. Stavdas, Core and Metro Networks. Hoboken, NJ, USA: Wiley, 2010.
G. Wikstrom, J. Peisa, P. Rugeland, N. Johansson, S. Parkvall, M. Girnyk,
G. Mildh, and I. L. Da Silva, “Challenges and technologies for 6G,” in
Proc. 2nd 6G Wireless Summit, Gain Edge 6G Era (6G SUMMIT), 2020,
pp. 1-5.

D. Kreutz, - M. V. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking:
A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76,
Dec. 2014.

M. Newman, Networks. London, U.K.: Oxford Univ. Press, 2018.

M. E. J. Newman and D. J. Watts, “Renormalization group analysis
of the small-world network model,” Phys. Lett. A, vol. 263, nos. 4-6,
pp. 341-346, Dec. 1999.

E. Trunzer, A. Cala, P. Leitdo, M. Gepp, J. Kinghorst, A. Liider,
H. Schauerte, M. Reifferscheid, and B. Vogel-Heuser, ““System architec-
tures for industrie 4.0 applications: Derivation of a generic architecture
proposal,” Prod. Eng., vol. 13, nos. 3—4, pp. 247-257, 2019.

VOLUME 9, 2021

M. P. Hernandez et al.: Relaxing Platform Dependencies in Agent-Based Control Systems

IEEE Access

[62] L. Mastrogiacomo, F. Barravecchia, and F. Franceschini, “A worldwide
survey on manufacturing servitization,” Int. J. Adv. Manuf. Technol.,
vol. 103, nos. 9-12, pp. 3927-3942, Aug. 2019.

[63] V. Struhar, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-time
containers: A survey,” in Proc. Workshop Fog Comput. 1oT (Fog-1oT),
vol. 80, 2020, pp. 7:1-7:9.

MARCO PEREZ HERNANDEZ (Member, IEEE)
is a Research Associate at the University of Cam-
bridge. He works in topics related to agent-based
control, multi agent systems and more generally
distributed artificial intelligence and its applica-
tion to industrial systems including manufacturing
and telecommunication infrastructures.

Marco completed his PhD in Computer Science
at the University of Leicester with a focus on the
realisation of adaptability and autonomy proper-
ties of smart objects systems. Dr. Pérez-Herndndez also holds a Master
degree in Business Administration and a BEng degree in Systems Engineer-
ing. He has been an active IEEE member for more than 10 years. In addition
to his research and teaching experience, Marco has been involved in several
software engineering and IT industry projects across different sectors.

DUNCAN MCFARLANE (Member, IEEE) is Pro-
fessor of Industrial Information Engineering at
the Cambridge University Engineering Depart-
ment, and head of the Distributed Information &
Automation Laboratory within the Institute for
Manufacturing. He has been involved in the design
and operation of industrial automation and infor-
mation systems for twenty years.

Prof McFarlane completed a B Eng degree at
Melbourne University in 1984, a PhD in the design
of robust control systems at Cambridge in 1988, and worked industrially with
BHP Australia in engineering and research positions between 1980 and 1994.
Prof McFarlane joined the Department of Engineering at Cambridge in 1995
as a lecturer in the area of industrial automation systems. His research work
is focused in the areas of distributed industrial automation, reconfigurable
systems, RFID integration, track and trace systems and valuing industrial
information. Most recently he has been examining the role of automation and
information solutions in supporting service environments and in addressing
environmental concerns.

VOLUME 9, 2021

AJITH KUMAR PARLIKAD (Member, IEEE)
Reader in Asset Management within the Cambridge
University Engineering Department. He is based
at the Institute for Manufacturing, where he is the
Head of the Asset Management research group. He
is a Fellow and Tutor at Hughes Hall.

Dr. Parlikad leads research activities on engi-
neering asset management and maintenance. His
particular focus is on examining how asset infor-
mation can be used to improve asset performance
through effective decision-making. He actively engages with industry
through research and consulting projects. He is a member of the steering
committees of the IFAC Working Group on Advanced Maintenance Engi-
neering, Services and Technology and the UK Digital Twin Hub.

MANUEL HERRERA (Member, IEEE) is a
Research Associate in distributed intelligent sys-
tems at the University of Cambridge. He has a PhD
in Hydraulic Engineering and a degree in Statis-
tics. His research focuses on predictive analytics
and complex (adaptive) networks for smart and
resilient critical infrastructure and utilities.

Dr. Herrera’s interdisciplinary profile has
proven to be successful in terms of the number and
quality of publications, having a high academic
impact. His latest research deals with the management and maintenance
of Internet-backbone infrastructure. Manuel is an IEEE member, fellow
of the Royal Statistical Society and a member of the Complex Systems
Society and the International Association of Critical Infrastructure Protection
Professionals.

AMIT KUMAR JAIN is working as Research
Associate at the University of Cambridge, UK. He
obtained his PhD degree in Industrial and Systems
Engineering from the Indian Institute of Technol-
ogy Indore, India in 2018. Having trained as an
industrial systems engineer and then embarking on
a research career in Artificial Intelligence, he is
fascinated by the merger of the two. Specifically,
he designs and implements machine learning and
deep learning approaches to estimate, predict, and
classify industrial data sets from multifarious machines. Findings from his
research work apply to problems relevant to the field of engineering asset
management and intelligent manufacturing. His major research interests are
in the areas of reliability modelling, smart manufacturing, process quality
control, sensor-based prognostics, data-driven decision making, and ensem-
ble learning. He is a member of the Prognostics and Health Management
Society, USA.

30527

